Physical Science

Chapter 18 Atoms and Bonding

Dmitri Mendeleev - 1869

- Mendeleev was born in Siberia, Russia in the year 1834. He died in 1907
- He was a professor of Chemistry at the St. Petersburg University.
 - Trying to explain to his students how elements had similar properties, he started organizing the elements into rows and columns
- He observed that some elements have similar chemical & physical properties
- The first periodic table was organized by atomic mass
 - The masses were compared to Hydrogen, the lightest known element at the time.
- The modern Periodic Table is organized by Atomic number

Atomic Models in History

- Democritus, Greek philosopher, around 400 BC used the term "atomos" which means "indivisible-unbreakable" to describe (where we get the word "atom")
- John Dalton, 1808 very similar to Democritus said atoms were like solid balls
- JJ Thomson, 1897 described the atom as a positively charged sphere with negatively charged electrons embedded inside to create a neutrally charged particle. Often described as a muffin w/ berries scattered throughout.

Atomic Models in History

- Rutherford, 1911 refined Dalton's theory & stated atom is mostly empty space and the negatively charged electrons randomly orbit the positively charged nucleus.
- Bohr, 1913 Said electron NOT random but in specific layers or energy levels. Increasing in energy the farther from the nucleus
- Chadwick, 1932 realized the mass of the atoms didn't correspond to the mass suggested by Bohr's model. He discovered the neutron and determined they were in the nucleus with the protons
- Modern Theory, present shows electrons not in orbits but specific clouds, each having their own level of energy

Chemical Bonds

- A chemical bond forms between two atoms when valence electrons move between them
- Two main types of chemical bonds
 - Covalent Bonds: occur between atoms when valence electrons are shared.
 - lonic Bonds: occur when valence electrons are transferred (stolen) between atoms
 - A third type of bond between atoms are hydrogen bonds

Ionic Bonding

- When an atom gains or loses and electron or two they no longer have a neutral charge. A charged atom is called an "lon"
- An Ion w/ extra electrons makes it negatively charged, this an Anion
- An Ion w/ more protons than electrons makes it positively charged & is called a Cation.
- A "+" ion (Cation) is attracted to a (-) ion (Anion) just like two magnets are attracted to each other
- When ions get close enough together they form an chemical bond – an Ionic Bond!

Ding-a-Ling! Ding-a-Ling! A metal and a nonmetal will form Ionic Bonds when chemically bonded together!!

Naming Ionic compounds

- 1. The metal is named first
- 2. If the anion is an element, the end of its name is changed ti "ide"
- 3. Polyatomic ions usually keep their names

NTK - "Polyatomic" ions

HCO₃⁻¹ Bicarbonate NO₃-1 Nitrate O⁻² Oxide SO₄⁻² Sulfate CO₃⁻² Carbonate

Counting Atoms in an Equation

- If no subscript present it is assumed to be 1 atom
- If elements in brackets or parenthesis, treat same as in math.
- Coefficients multiple the entire molecule atoms
- You must add all reactant molecules together & compare w/ all molecules in the products

CaCl₂ Ca=1 Cl=2

Use this to help with worksheet pg. 51 – Number of Atoms in a Formula !!!

Ca₃(PO₄)₂
Ca=3
P=2
O=8

2Ca₃(PO₄)₂
Ca=6
P=4
O=16

It's best to list the # of atoms under the molecules as we are doing in these

examples

Writing Binary Formulas

- Ions build strong bonds that have a net electrical charge of 0 (zero)
- Remember the Cation (+ ion) is listed 1st, the Anion (- ion) is 2nd
- You write how many of the ions you need as subscripts.
- A Sodium ion, Na⁺ will bond with a Chlorine ion, Cl⁻ → NaCl
- A Barium ion, Ba⁺², will bond with a Flourine ion, F⁻ →BaF₂
 - How many Flourine ions do you need to balance the +2 charge on the Ba ion? ... you need 2 and you write the formula as a subscript on the Flourine ion.
- A Silver ion, Ag^+ will bond with an Oxygen ion, $O^{-2} \rightarrow Ag_2O$
 - You need 2 Ag+ to balance the O-2 charge
- A Nickel ion, Ni⁺³ will bond with an Oxygen ion, O⁻² → Ni₂O₃
 - With this bond you need 2 Nickel⁺³'s that have a total of a +6 electrical charge to balance 3 Oxygen⁻²'s that will have a total of -6 electrical charge. A +6 added to a -6 = 0

Use this to help with worksheet pg. 54 – Writing Binary Formulas !!!

Covalent Bonding

- When valence electrons are "shared", covalent bonds are formed
- · They are generally weaker than Ionic bonds
- The number of bonds an atom can form is equal to the number of electrons needed to reach the required 8 valence electrons
- Hydrogen needs only 1 to be like Helium that has 2 and fills its "S" orbit.

together!!

Polar or Nonpolar Covalent Bonding

- · Nonpolar Covalent Bonds Equal sharing of electrons
- Polar Covalent Bonds an unequal sharing of electrons
- Some atoms pull stronger on the "shared" electrons than other atoms
 - These electrons move closer to these atoms and they become more negatively charged
 - The atom that the shared electrons move away from become slightly positively charged

Hydrogen Bonds
• The weak attractive force of a hydrogen atom and a negatively charged part of another molecule/atom.

Here's a little secret....Quarks!

- Protons and Neutrons can be broken into smaller elemental particles called quarks!
- Quarks the building blocks of subatomic particles. These "FLAVORS" come in 3 pairs, so there are 6 different quarks: Up, Down, Top, Bottom, Charmed and Strange
- A quark has a mass of 1/3 AMU
- An Up quark has a 2/3 positive charge and a Down quark has a 1/3 negative charge
- A proton is made up of 2 "up" quarks and 1 "down" quark • Which gives it a net +1 electrical charge
- A neutron is made of 2 "Down" quarks and 1 "Up" quark. Which gives it a net 0 electrical charge

The electron is also an elementary particle known as a "Lepton" & has a mass 1/612 that of a quark

No Mas!! No Mas!! We be done!!