Physical Science Chapter 1

Motion

Are You Moving?

- You are sitting down, reading a book....
- · Are you moving?
- Object is in motion when its distance from another object is changing.
- All depends on the "Point of Reference"
- Therefore object is in motion if it changes position relative to a reference point.

International System of Units

- "SI"
 - Based on the number 10
 - Distance (length) uses meter (about 39 inches)
 - Mass (how much matter) uses gram (a nickel is about 5 grams)
 - Volume (how much space)
 - Liquid volume uses liter (a little more than a quart)
 - Solid volume uses cm³ (about the size of a sugar cube)
 - 1 ml = 1 cm3
 - Weight (affect gravity has on object) uses newton (an apple weighs about 1 newton) (1 pound is about 4.4 newtons)
 - Density = Mass / Volume = grms / ml

To Amplify the Point

- Distances can be short or very long.
 - Basic metric unit of length is the meter.
 - Metric prefixes are based on the number 10.
 - 10 meters = 1 dekameter
 - 10 dekameters = 1 hectoliter
 - 10 hectoliters = 1 kilometer
 - Therefore: 1 kilometer = 1000 meters
 - And...
 - There are 10 decimeters in a meter
 - There are 10 centimeters in a decimeter
 - There are 10 millimeter in a centimeter
 - Therefore: 1000 millimeters = 1 meter

Metric Stairs

☐ You should be comfortable with converting from [cm] to [m], [mm] to [km], and so on.

Graphing (x,y) coordinates

A graph w/ points (2,3), (-2,1) & (1.5, -1)
 plotted:

More Graphing!

- Graph the following points:
 - a) (3, 3)
 - b) (-2,3)
 - c) (-1, -2)
 - d)(3,0)
 - e) (0, 0)
 - f) (0, -4)

& Still More Graphing....

· What are the coordinates of these points?

Click for the answers...

- a. (2, 0)
- b) (0, 2)
- c) (4, 3)
- d) (-1, 3)
- e) (-3, 3)
- f) (-1, 3)
- g) (-3, -1)
- h) (2, -4)

Graphing line slopes (rise/run)

- 1. Graph the line which passes through (2, 3) and has a slope of 2/3.
- 2. Graph the line which passes through (1, 1) and has a slope of -4. (remember 4 = -4/1)

Graphing points & slope (rise/run)

- 1. Graph the line which passes through (0, 2) and has a slope of 3. (remember 3 can be written as 3/1)
- 2. Graph the line which passes through (-1, 1) and has a slope of -2/3.

Working w/ Units

- Determining the correct units in a problem is just as important as getting the number correct.
- Remember we can "cancel" numerators & denominators to make the math easier:
- $24 \times 6 \times 2 \times 9 \times 18 = 24 \times 6^2 \times 2 \times 9 \times 18 = 4$ $12 \times 18 \times 3 \times 3 \times 24 = 12 \times 18 \times 3 \times 24 = 4$

We can do the same w/ units....

Multiplying & Dividing Units

• Do this problem:

5 minutes x 3 feet = 15 minute feet

• Do this problem:

12 miles 3 hours 4 miles hour

· Do this problem:

mile x week x dollar x bananas x week x newton x week dollar x newton x mile x bananas x week x kilogram x week

mile x week x dollar x bananas x week x newton x week dollar x newton x mile x bananas x week x kilogram x week

Week kilogram

Speed = distance / time

- Formula: S=D/T
- What is the speed of a car that traveled 75 km in 1.5 hr?

S = D / T = 75km / 1.5 hr = 50 km/hr

- Tells only a magnitude (how much)
 - Distance units include: inches (in), feet (ft), miles (mi), meters (m), kilometers (km), centimeters (cm), light year, etc.
 - Time units include minutes (min), seconds (sec), hours (hr), years (yr), etc.
 - Speed can be any distance unit divided by any time unit!!
 - Mi/hr, ft/sec, km/min

Velocity is speed with a direction

- Written like: 125 miles/hour east or 83 m/sec towards the house
- What is the velocity of a jet that traveled 1623 mi North in 83 min?

V = D / T = 1623 mi / 83 min = 19.5 mi/min North

Average Speed or Average Velocity

Average speed = total distance / total time

Time (min)	Distance (m)	
0	0	
1	- 50	
2	75	
3	90	
4	110	
5	125	

What is the average speed after 2 minutes?

total distance is 75m, total time is 2 minutes.

What is the average speed between 2 & 4 minutes? total distance: 110m - 75m = 35m total time: 4min - 2min = 2minutes total time

S = D/T S = 35m / 2min S= 17.5 m/min

Acceleration

- · The change in speed or velocity over time
 - In scientific community, the symbol for "change" is the triangle:
 - Change in velocity is found by subtracting the final speed from the initial speed

$$V_f - V_i = \blacktriangle V$$

The formula for acceleration is:

$$A = \underline{V_f} - \underline{V_i} = \underline{AV}$$
time time

Therefore the units for acceleration are going to be a

distance/time/time

Example

ft/min/sec

Acceleration

- For an object to accelerated it
 - Speed up (positive acceleration)
 - Slow down (negative acceleration a.k.a deceleration)
 - Change direction of travel

Each of these pictures depicts a type of acceleration:

- 1: the shuttle is speeding up every sec of the flight into orbit
- 2. the horse has come to a screeching halt (slowing down)
- 3. the baseball thrown to the batter is hit into the outfield (changed direction)

What's it mean?

- What does a = 5 [m/sec²] mean?
- If an object starts at rest, its velocity increases by 5
 [m/sec] every second.

Time (sec)	Acceleration	Velocity
0	5 m/sec ²	0 m/sec
1	5 m/sec ²	5 m/sec
2	5 m/sec ²	10 m/sec
3	5 m/sec ²	15 m/sec
4	5 m/sec ²	20 m/sec

Therefore, an object accelerating at 5m/sec² will be travelling at 20 m/sec after 4 seconds.

Acceleration Problems:

• Calculate acceleration for the following data:

	Initial Velocity	Final Velocity	Time
$A = \frac{60 \text{km/hr} - 20 \text{ km/hr}}{4 \text{ km/hr}}$	20 km/hr	60 km/hr	10 s
10 sec sec	50 m/s	150 m/s	5 s
$A = \frac{150 \text{km/sec} - 50 \text{ km/sec}}{5 \text{ sec}} = \frac{20 \text{ km}}{\text{sec}^2}$	25 km/hr	1200 km/hr	2 min
A = <u>1200km/hr - 25 km/hr</u> = <u>587.5 km</u> 2 min min	m/hr		

Well, I checked for boo boos... They should be fixed now... Hopefully this works correctly...

cuz we're done w/ 1